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Abstract Scientific collaboration plays an important role in the knowledge production and

scientific development. Researchers have investigated numerous aspects of scientific col-

laboration by constructing scientific collaboration networks. And we can perform node

centrality analysis on the scientific collaboration networks to identify important scholars.

In these collaboration networks, two scientists are linked if they have coauthored at least

one paper and the way of constructing these networks is based on the assumption that each

author’s contribution to an article is the same. However, the authors’ contributions to an

article are unequal in reality and we should pay attention to the impact of this unequal

credit allocation on the understanding of scientific collaboration. In this paper, we regard

the first author as the most important contributor to an article and build a directed scientific

collaboration network. Then we identify important scholars by analyzing this directed

network. For one thing, we investigate the difference between the undirected and directed

scientific collaboration network in network properties and centrality analysis. For another,

we apply different centrality indices: betweenness, PageRank, SIR and HITS to the

directed scientific collaboration network. As a result, we find that each indicator has a

different performance and the PageRank algorithm and SIR show highly positive corre-

lation with in-degree. The HITS algorithm also shows better property which can hep us

distinguish potential young scholars and identify important collaborators.
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Introduction

Research collaboration as one of important scientific activities is of great significance for

knowledge creation and dissemination (Tijssen 2004; Wuchty et al. 2007; Sonnenwald

2007). As one of the most important elements of the research collaboration, scientists

promote the emergence of novel ideas and increase the scientific research output by

combining diversified knowledge and techniques of different research fields. Important

scholars have more opportunities to get access to the knowledge and financial resources,

thereby they could form more excellent research teams and create more influential and

innovative knowledge. In order to achieve more effective collaboration and promote

knowledge creation and spreading, identifying important scholars in research collaboration

becomes more necessary and significative.

The scientific collaboration network is a social network where the nodes represent

authors and the edges represent the co-authorship (Newman 2001). The researchers who

occupy different network positions have their own characteristics and play different roles

(Ebadi and Schiffauerova 2015). So the impact of scientists can be measured by analyzing

their positions in collaboration networks. Some traditional network centrality measures

such as degree, closeness, betweenness and PageRank and so on have been applied in the

collaboration network to estimate the importance of scientists (Yan and Ding 2009). In

addition, the sufficient analysis of the scientific collaboration network can help to reveal

the cooperation mechanisms and characteristics of scientists and deepen the understanding

of scientific collaboration. In the last 20 years, the studies of scientific collaborations

networks have attracted wide attention in different fields (Newman 2001; Fan et al. 2004;

Li et al. 2005; Hou et al. 2007; Ding 2011). Based on the empirical data, several aspects of

scientific collaboration networks have been investigated and a series of research findings

have been achieved, including basic structural properties (Newman 2001), assortative

mixing (Newman 2002) and rich-club ordering (Colizza et al. 2006; Opsahl et al. 2008),

community detection (Girvan and Newman 2002; Radicchi et al. 2004; Palla et al. 2005),

network evolution patterns and mechanisms (Barabási et al. 2002; Evans et al. 2011; Zhai

et al. 2014; Liu and Xia 2015), influence evaluation (Lu and Feng 2009; Yan et al. 2011;

Yan and Ding 2011). The above-mentioned findings are all based on the network topology

of scientific collaboration network which is undirected and unweighted. And the con-

struction of this kind of network is based on the assumption that all authors contribute

equally to an article. Moreover, many metrics such as h-index and its variants, PageRank

and its variants, Q value (Sinatra et al. 2016) and so on have been developed to evaluate

the scientists (Zeng et al. 2017). And these indicators can be used as an important reference

when selecting important scientists.

A large amount of effort has been made by network scientists to further understand and

model the evolution of the collaboration networks, with also numerous methods designed

for ranking and prediction in these networks. However, all these works characterized the

scientific collaboration data with undirected networks, leading to a huge amount of

information loss. In the undirected networks, one scientist can be linked to other scientists

due to many different cases, e.g. by either collaborating with them in a paper or collab-

orating individually with each of them in five separate papers. More importantly, whether a

scientist is collaborating with others as a first author or not cannot be distinguished in the

undirected networks. These factors are the key components determining the influence and

future potential of scientists. As such, by analyzing only the undirected collaboration

network will very likely result in a biased ranking and prediction of scientists behavior. We

also learn that the collaboration networks can be modelled as directed network (Liu et al.
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2005; Kim and Diesner 2015). For example, Yoshikane et al. (2006) regarded the first

author of a paper as the leader and the other coauthors as followers and they built a directed

collaboration network. They compared the co-authorship networks between the theoretical

and application areas in computer science and identified important researchers. Inspired by

Yoshikane et al. we also divide authors of a publication into two types: important con-

tributors and ordinary contributors. Because the first author of an article is easily identified

and makes a great contribution for the publication, for simplicity, we also only regard the

first author as important contributor and other coauthors as ordinary contributors. Based on

the above assumption, we construct the directed scientific collaboration network and

identify important scholars via this network.

In this paper, we model the scientific collaboration data in the field of complex systems

with directed networks which well capture the detailed structure of the collaboration

behaviors completely neglected in the undirected network case. Considering the influence

of the structure of collaboration network on identifying important scholars, we compare

this directed scientific collaboration network with undirected scientific collaboration net-

work in network property and node centrality. The results show that there are certain

similarities such as power-law degree distribution and clear community structure as well as

differences in cluster coefficients and degree correlation between these two networks. We

apply three centrality indicators: betweenness, PageRank and SIR to the undirected and

directed scientific collaboration network. We find that the ranking results on these two

collaboration networks show obvious differences in terms of each index, especially

PageRank and SIR. Therefore, the way of constructing collaboration network exerts an

obvious influence on ranking scholars. Finally, we compare the ranking results of several

centrality indicators applied into the directed scientific collaboration network. This

research helps to understand the collaboration among scientists in the field of complex

systems and contributes to the identification of important scholars in this field.

A B

Fig. 1 (Color online) The schematic diagram of two forms of collaboration networks for a scientific
publication. a The undirected scientific collaboration network, where all authors in a paper are connected to
each other. b The directed scientific collaboration network, where the directed edges are from non-first
authors of a paper to the first author
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Methods

Network construction and data

In this article, we study two kinds of scientific collaboration networks which are undirected

and directed respectively shown in Fig. 1. The undirected scientific collaboration network

is the most frequently mentioned and traditional collaboration network. This type of net-

work is an undirected and unweighted. In this network, there exists an edge between the

two scientists if they have written at least one article together. For the directed scientific

collaboration network, currently it is much less studied. In this network, the directed edge

tells us which node is ever as the first author or non-first author between two authors. For

example, if there is an edge from author A to author B, it means that author A writes a

scientific paper with author B and the author B is the first author in the paper. The directed

scientific collaboration network which is also an unweighted network cuts off the rela-

tionship among the non-first authors in the publication.

To verify the differences between the two collaboration networks mentioned above, we

focus on a field of science: complex systems, which is about studying how parts of a

system give rise to the collective behaviors of the system, and how the system interacts

with its environment [http://necsi.edu/guide/]. Our database used in this paper is collected

according to Physics and Astronomy Classification Scheme(PACS) code which was

developed by the American Institute of Physics (AIP) to identify fields and sub-fields of

physics [https://journals.aps.org/PACS]. The relevant PACS codes of complex systems are

89.75.-k, 89.75.Da, 89.75.Fb, 89.75.Hc, 89.75.Kd. Because an article can involve several

PACS codes and we will incorporate this article into our data set as long as it contains one

of PACS codes mentioned above. We have collected 2323 papers from 2001 to 2009 in

complex systems. For each paper, the information about its title, DOI, authors and their

affiliations, publication time, PACS code and the DOI of its citing papers can be obtained.

In our data set, each author has a unique name and we do not need to deal with author name

disambiguation problem. Based on the above information, we construct the undirected and

directed scientific collaboration network, respectively.

Centrality measures

With the development of complex networks, many indicators used to measure the node

centrality have been proposed. We considered five representative centrality measures in

this paper. Frankly speaking, it is still a challenging issue to determine which centrality

measure performs best in the analysis of directed networks, as confirmed by a recent

review article (Lü et al. 2016). In this context, we try our best to select diverse centrality

metrics in order to cover different aspects for central nodes in directed networks. The first

measure is the most straightforward index called degree centrality which uses only the one-

step local information to estimate the centrality of a node. The second measure, however, is

a global index called betweenness. It depends on the shortest path lengths and promotes the

importance of bridging nodes. The third one is the well-known PageRank algorithm which

computes the centrality score of nodes based on an iterative process. The fourth one is the

centrality measure based on SIR model. With this dynamical process, the node with the

largest spreading coverage is considered as the highest centrality. This centrality is adopted

as it mimics the knowledge spreading scenario in scientific collaboration. The final mea-

sure is the HITS algorithm which assigns two roles to each node in the directed networks.
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Degree centrality

A directed network can be described by an adjacency matrix A in which an element aij ¼ 1

indicates there is a directed edge from node i to node j. Degree centrality as a local

centrality to measure node’s importance is very simple. For directed networks, two degree

centralities: in-degree and out-degree should be considered. The in-degree of node i is the

number of links directly pointing to the node i and the out-degree of node i is the number of

links from node i to other nodes. The in-degree and out-degree of node i are defined as:

kin
i ¼

Xn

j¼1

aji; kout
i ¼

Xn

j¼1

aij: ð1Þ

where n is the number of nodes in the network.

Betweenness centrality

The betweenness centrality is one of path-based centralities which can be applied into

directed or undirected network and it measures the extent to which a particular node lies on

shortest paths between the other pairs of nodes in the network (Kintali 2008). Therefore,

the betweenness of node i is given by:

bcðiÞ ¼
X

i 6¼s 6¼t

gist
gst

: ð2Þ

PageRank

PageRank was originally proposed to rank web pages in Google search engine (Brin and

Page 1998). Its basic idea is that the importance of a web page is determined by both the

quantity and the quality of the pages linked to it. Now it has been applied in different fields

far beyond its origins (Gleich 2015). Especially, in scientometrics, PageRank and its

variants have been used to evaluate the importance of different objects such as papers,

scientists, journals and institutions. PageRank which is an iterative algorithm can also be

applied in both directed and undirected network. Mathematically, the PageRank score of

node i in the network at step t is given by:

PRiðtÞ ¼ d
Xn

j¼1

Aji

PRjðt � 1Þ
kout
j

þ ð1 � dÞ 1

n
ð3Þ

where n is the total number of nodes in the network, kout
j is the number of outgoing links of

node j, d represents the probability for a random walker to continue walking through the

outgoing links of the present node and ð1 � dÞ is the probability for a random walker to

jump to a random node from the present node. In this article, we set d ¼ 0:85 which is the

typical value in computer science (Brin and Page 1998).

The SIR model

The SIR model is one of classic epidemic models and it could be extended to measure the

spreading effect of specific nodes in the undirected or directed network (Lü et al. 2016). In
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this model, all nodes in the network belong to one of three states: susceptible(S), infec-

ted(I), or recovered(R). Initially, all nodes are in the susceptible state except for one

infected node which is selected to examine its spreading performance. At each time step,

each infected node will infect their susceptible neighbours with probability b and then

enters the recovered state where the node cannot infect or be infected with a probability l.

For simplicity, in this paper we set l = 1. The spreading process will end until there is no

longer new infected node appearing in the network. Then the spreading influence of the

target node could be defined as the number of recovered nodes in the complete spreading

process. In this paper, we set the infected probability b = 1.5bc where bc is the approximate

epidemic threshold:

bc ¼ hki=ðhk2i � hkiÞ ð4Þ

HITS algorithm

HITS (hyperlink-induced topic search) algorithm is originally proposed to discover and

rank web pages relevant for a particular topic (Kleinberg 1999). Now this method has been

applied to rank publications, scientists and journals. The HITS algorithm measures a

node’s importance from two aspects: authority and hub. A good hub points to many good

authorities and a good authority is linked to many good hubs. Thus each node in the

directed network can be assigned two scores: authority score and hub score. For node i, We

denote its authority score and hub score at time t by aiðtÞ and hiðtÞ, respectively. Originally,

the hub scores of all nodes are assigned one unit score and the authority and hub score of

node vi at time t can be computed as:

a0iðtÞ ¼
Xn

j¼1

ajihjðt � 1Þ; h0iðtÞ ¼
Xn

j¼1

aija
0
jðtÞ: ð5Þ

where n is the number of nodes in the network. After each iteration, the value of a0iðtÞ and

h0iðtÞ should be normalized as follow:

aiðtÞ ¼
a0iðtÞ
ka0ðtÞk ; hiðtÞ ¼

h0iðtÞ
kh0ðtÞk : ð6Þ

Results and analysis

Descriptive analysis for collaboration in complex systems (2001–2009)

First of all, we extract the basic information of the database we collected. In the period of

2001–2009, we collect 2323 papers in all and 3749 authors are involved. We investigate

the distribution of number of authors per paper (2001–2009) shown in Fig. 2. We can see

that more than half of the scientific papers have only two or three authors. And single-

author papers account for about one tenth of the collected articles. Furthermore, there are

few scientific articles (\5%) whose the number of authors are more than 5. It indicates

that the collaboration in the field of complex systems is relatively frequent and the scale of

collaboration is also small. In order to better describe the development and collaboration of

the field of complex systems, we make a more temporal analysis. For example, the
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evolution of the number of articles and the number of authors per articles are shown in

Fig. 3. One can see that the number of articles per year generally keeps increasing with a

small decrease in year 2007. The positive growth trend of the the number of authors per

articles also indicates that the collaboration in complex systems is becoming more closely.

In order to further explore the collaboration, we analyze the evolution of the number of

papers and the relative number of papers per year with different number of authors shown

in Fig. 4. The relative number of papers per year is obtained by normalization of the

number of papers per year with different number of authors. By observing the evolution of

relative number of papers with different number of authors, we can find that overall the

number of three-author papers shows a growing trend but the number of two-author papers

shows a slight downward trend.

Comparative analysis of network properties

Based on the above-mentioned data set which is related to the field of complex systems

(2001–2009), we have constructed two kinds of networks: undirected scientific collabo-

ration network (USCN) and directed scientific collaboration network (DSCN). There are

3749 nodes and 6550 undirected edges in the USCN. And in the DSCN, it contains 3749

Fig. 2 (Color online) Distribution of the number of authors per paper in our data set
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Fig. 3 (Color online) a is the number of articles over different years in our dataset. b is the number of
authors per articles published in different years
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nodes and 3618 special directed edges. We can find that these two networks are not fully

connected graphs. When we consider the weak components of DSCN, which ignores the

edge direction of directed network, the USCN has the same distribution of components

with DSCN shown in Fig. 5a. We find that there are 730 components in the networks, of

which the giant component includes 1075 nodes and the second largest component con-

tains 62 nodes. We also observe that the size of 475 components which contain 1012 nodes

(26.99% of the network) is smaller than 4. Because the small components are not enough to

reveal the network statistical properties, so we mainly focus on the statistical properties of

the giant component (GC) whose scale is relatively large to analyze the differences

between two networks.

There exist essential differences between USCN and DSCN due to the edge direction.

Firstly, we investigate the network properties of the GC of USCN. For the undirected

scientific collaboration network, the degree of author i is the number of collaborators who

are ever with author i appeared in the author list of articles. We study the cumulative

degree distributions of the GC shown in Fig. 5b. We can find that the cumulative degree

distribution of the GC approximately follows the power-law distribution and the max

degree is 56, which indicates that few scholars have a large number of collaborators and

most people have a small number of collaborators.
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Fig. 4 (Color online) a, b are the evolution of the number of papers and the relative number of papers with
different number of authors in the period 2001–2009, respectively
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Fig. 5 (Color online) a is the distribution of the size of components of the USCN and b is the cumulative
degree distribution of the GC of the USCN
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Then we calculate other network properties of the GC of USCN such as cluster coef-

ficient, average path length, degree–degree correlation presented in Table 1. The clustering

coefficient of network measures the extent to which nodes in the network tend to cluster

together. The average path length of the network is the average distance between all pairs

of nodes in the network. We can observe the giant component of USCN shows the small-

world property compared to the random networks of the same size and the GC of USCN

has much bigger cluster coefficient and smaller average path length. Degree correlation

describes the relationship between the degrees of nodes that link to each other and could

reveal the the network topology which belongs to assortative network, disassortative

network or neutral network. The degree correlation coefficient of the GC is close to 0 and

not clearly distinct from random networks’, which indicates the hierarchical structures of

the GC of USCN is not obvious and it is a neutral network. Community structure as one of

common meso-scale features means that there exist many subgroups of nodes that are

densely connected internally but with few links outside the subgroups. To detect whether

the GC has clear community structure, we adopt the index of modularity Q (Newman and

Girvan 2004)which is one of widely used methods of community detection in networks.

The optimal Q values are 0.8424 for the GC of USCN, which shows the network has

obvious community structure.

Next, we study the statistical properties of the GC of the DSCN. For the DSCN, the in-

degree of the author i is the number of collaborators who are as non-first author but author i

is as the first author in the publications. And the out-degree of the author i is the number of

collaborators who are as the first author in their co-authored papers. Then the degree of

author i is the sum of in-degree and out-degree. The cumulative degree distributions of its

giant component are shown in Fig. 6. The cumulative distributions of degree, in-degree

and out-degree all approximately follow the power-law distribution and their scale-free

exponents are larger than 3. Compared with the cumulative in-degree distribution, the

cumulative out-degree distribution has a longer tail, which indicates that many scientists

are more involved in others’ works rather than as the principal person of the projects. For

directed networks, there are four different patterns of directed triangles that result in four

different clustering coefficients (Fagiolo 2007) shown in Fig. 7a. We can see that overall

these four clustering coefficients are much smaller compared with the clustering coefficient

of the GC of USCN, which exhibits significant difference between the USCN and DSCN.

To some extent these kinds of triangles describe the partnership of an author’s neighbours.

We find that the case that three authors are all ever as the first author is very few and its

clustering coefficient Ccyc is equal to 0.0057. We also calculate the four kinds of degree

correlation coefficients (Foster et al. 2010) which quantify the assortative or disassortative

tendency of the network shown in Fig. 7b. The values of (in, out) correlation coefficient

Table 1 The statistical properties of the GC of USCN as well as its corresponding random network

Network \ k[ \ c[ \ l[ r

GC of USCN 4.8242 0.7225 7.1445 �0.0132

RN 4.8242 0.0116 4.1642 �0.0244

RN is the corresponding random networks of USCN, which are generated 100 times by randomly reshuffling
links.\k[,\c[,\l[, r represent the average degree, average clustering coefficient, average path length,
degree correlation coefficient respectively
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and (out, in) correlation coefficient are close to zero, which reveals no significant corre-

lation between the in-degree and out-degree. However, the (out, out) correlation coefficient

is �0:106 and (in, in) correlation coefficient is �0:2084. They both show significant

negative correlation, which indicates authors with many first-author papers tend to col-

laborate with the authors with few first-author papers. We also analyze the community

structure of directed giant component using the method of modularity maximization

(Leicht and Newman 2008) and the result shows that the directed giant component is

divided into 72 communities with an optimal modularity of Q ¼ 0:8396. So we can see that

the undirected and directed scientific collaboration network has many similarities such as

power-law degree distribution and community structure as well as differences such as

cluster coefficient and degree correlation.

As the above analysis focuses on the static properties of collaboration network which is

actually a complex evolving network, we also investigate the dynamical properties of these

two kinds of collaboration network. Firstly, each year we will build two kinds of collab-

oration networks based on the cumulative data from 2001 up to a given year. And then we

extract the giant components of each networks as well as analyze the network properties of

these giant components. The results of the dynamical network properties of the giant

components are presented in Tables 2 and 3. We can find that the network properties of

two kinds of collaboration networks keep relatively stable in the periods of 2001–2009.
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Fig. 7 (Color online) a is the four clustering coefficients with eight different directed triangles and b is the
four degree–degree correlations in directed scientific collaboration network
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Node centrality analysis

The roles of researchers are tightly related to their positions in the collaboration network.

Identifying these important researchers based on collaboration networks is one of impor-

tant applications. Firstly, we compare the ranking results between the undirected and

directed scientific collaboration network. We perform centrality analysis on the GCs of

USCN and DSCN. Betweenness could revel a node’s potential power in controlling

information flow in a network and identify some important researchers who act as a broker

or gatekeeper in the collaboration network. The PageRank algorithm could allocate nodes’

resources to their neighbours iteratively to distinguish important scholars. And the SIR

model which is one of the classical network diffusion models could identify the influential

spreaders in terms of idea spreading and knowledge diffusion. We select the above three

centrality indicators which they can be both applied into undirected networks and directed

networks to identify important nodes. Based on the ranking results, we obtain the Spear-

man correlation coefficients in betweenness, PageRank and SIR between the two GCs are

0.6277, 0.1276, 0.3881, respectively. The correlation coefficients show us that the two

network structures have marked differences in terms of ranking scholars, which indicates

that the way of constructing collaboration network can directly affect the ranking results.

Further we compare the differences among ranking algorithms in the directed scientific

collaboration network. Table 4 shows a correlation matrix which are calculated using

Spearman correlation coefficient among the indices. We can find that the degree shows

higher correlation with in-degree, PageRank and SIR, but lower correlation with out-

degree. The in-degree shows negative correlation with out-degree but shows strong posi-

tive correlation with PagRank and SIR. Betweenness all shows positive correlation with

other indicators. We can also find that the PageRank shows higher correlation with in-

degree compared with degree. This is reasonable because the directed edges highlight the

position of the first author which PageRank algorithm ranks the authors with many first-

author papers higher just like in-degree. Different ranking algorithms have their own

advantages and we need to combine different evaluation indicators to identify important

scholars.

The HITS algorithm is also one of the well-known ranking methods which could

capture nodes’ importance from two aspects: authority and hub. We also make use of this

method to evaluate the importance of scientists in the directed scientific collaboration

network. The authority score and hub score of a scholar are related to in-degree and out-

Table 2 The evolution of statistics for the undirected scientific collaboration network

Statistics Time

2001 2002 2003 2004 2005 2006 2007 2008 2009

N 12 35 43 76 229 440 654 793 1075

\ k[ 7.1667 6.2286 6.2791 5.3684 4.5764 4.5273 4.7339 4.7617 4.8242

\ c[ 0.8876 0.8789 0.8702 0.7162 0.6956 0.6883 0.7058 0.7068 0.7225

\ l[ 1.3485 2.3546 2.3965 3.2751 9.2321 9.5832 7.7098 6.8796 7.1445

r �0.3363 �0.0541 �0.0753 0.0194 0.0426 �0.0246 �0.0071 �0.0169 �0.0132

Q value 0.1255 0.4074 0.4475 0.5352 0.7543 0.7948 0.8278 0.8417 0.8451

N is the number of authors in the giant components
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degree of the author respectively. Because the directed edge is from the the other coauthors

to coauthor, which it highlights the important position of the first author, so the authors

with many first author papers can have higher authority scores and the authors with many

first-author collaborators can have higher hub scores. Based on the rank of authority scores,

we can predict the development trend of young scholars’ academic career and identify

potential young scholars. High prestigious scholars are usually as the corresponding

authors in the publications and guide young scholars to carry out the scientific research as

well as they have higher hub scores. According to the rank of hub scores, we can identify

the popular collaborators and choose scientific partners properly. The ranking result is

shown in Fig. 8 and the highest ranking 5 scholars for authority scores and hub scores are

listed in Tables 5 and 6, respectively. We could find that few scholars both have higher

authority scores and hub scores like Eduardo López, Lidia A. Braunstein and Sergey V.

Buldyrev. This kind of people can be predicted the potential young scholars and they are

popular in the collaboration. We can also see that many scholars like H. Eugene Stanley

and Shlomo Havlin who are domain experts in the field of complex systems have very high

ranks in terms of hub scores. They have a better academic reputation and other scientists

like to collaborate with them. There are also many scholars like Yiping Chen and Zhenhua

Table 4 The Spearman correlation test of different ranking algorithms for the giant component of directed
scientific collaboration network

Degree In-degree Out-degree Betweenness PageRank SIR

Degree 1 0.7198 0.2757 0.5946 0.6892 0.6895

In-degree – 1 �0.3325 0.5651 0.9731 0.9782

Out-degree – – 1 0.3957 �0.3300 �0.3419

Betweenness – – – 1 0.5452 0.5506

PageRank – – – – 1 0.9751

SIR – – – – – 1
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Fig. 8 (Color online) The
distribution of the ranking results
based on the authority scores and
hub scores of the HITS algorithm
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Wu in our study who have very high ranks in terms of authority scores. These people as

potential young scholars have better scientific research quality and creativity.

Discussion

In this work, we constructed a directed collaboration network which highlights the

importance of the first author. We made an empirical analysis of the field of complex

system based on this network with special focus on two main issues including (1) the

difference between undirected and directed scientific collaboration network in terms of

network properties; (2) the comparison of the ranking results between the undirected and

directed scientific collaboration network. We perform our analysis on the giant components

of these two networks. Compared with undirected collaboration network, the directed

scientific collaboration network reduces the edge density but maintains the network con-

nectivity. The results also show that there exist many similar network properties such as

power-law degree distribution and community structures. However, due to edge direction,

the directed scientific collaboration network shows its own unique characteristics in

clustering coefficient and degree–degree correlation. For the directed collaboration net-

work, one can see that the out-degree distribution is broader than the in-degree distribution,

indicating that a scientist can have many non-first author papers but the number of their

first author papers is usually much smaller as publishing a first author paper requires much

Table 5 The top 5 authors who are regarded as the potential scholars ranked by the authority scores

Rank Name Number of first-author
papers

Number of non-first author
papers

In-
degree

Out-
degree

1 Tomer Kalisky 5 1 10 1

2 Sameet
Sreenivasan

2 1 8 1

3 Eduardo López 2 3 6 3

4 Yiping Chen 3 0 7 0

5 Zhenhua Wu 3 0 6 0

Table 6 The top 5 authors who are selected as the most popular collaborators ranked by the hub scores

Rank Name Number of first-author
papers

Number of non-first author
papers

In-
degree

Out-
degree

1 Shlomo Havlin 0 42 0 24

2 H. Eugene
Stanley

0 32 0 19

3 Reuven Cohen 5 10 6 8

4 Sergey V.
Buldyrev

2 8 3 7

5 Lidia A.
Braunstein

1 8 4 5
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more effort. The directed scientific collaboration network also has significant negative (in,

in) degree correlation. It means that young scientists (e.g. small indegree) tend to col-

laborate with more senior scientists (e.g. large indegree). As pointed out by recent liter-

atures, this tendency is more likely to result in a successful career of young scholars (Qi

et al. 2017; Amjad et al. 2017).

We also apply several classical ranking methods such as betweenness centrality,

PageRank and SIR model to undirected and directed collaboration networks to rank

scholars. We can observe that the ranking results for these two networks show obvious

differences especially in PageRank and SIR. This finding shows the influence of different

network structure on the identifying important scholars. In addition, we apply the HITS

algorithm with authority and hub scores to rank scientists in the directed collaboration

network. Interestingly, we find that the scholars with high hub scores are mainly well-

known experts in the field of complex systems such as H. Eugene Stanley and Shlomo

Havlin. The scholars with high authority scores, on the other hand, are young scholars with

remarkable potentials. Therefore, ranking scientists with directed collaboration networks

provides information which cannot hardly observed in undirected networks.

The contribution of directed collaboration networks is twofold relate to the standing

literature. Firstly, it is well-known that the undirected collaboration networks has high

clustering coefficient (Newman 2001) and positive degree correlation (Newman 2002).

However, one can observe a completely different properties in directed collaboration

networks, i.e. a much lower clustering coefficient and negative degree correlation. These

results indicates that directed collaboration networks provides a more detailed under-

standing of the collaboration data, complementary to the traditional undirected network

modeling. Secondly, the top ranked scientists in the undirected collaboration networks

mainly include the already outstanding scientists (Yan and Ding 2009). The directed

collaboration networks instead can simultaneously rank scientists based on both influence

and potential, offering a way to identify promising young scientists. Therefore, we believe

that studying the directed collaboration network shows us a more complete picture of the

scientific collaboration behavior.

It is undeniable that there exist many limitations related to the data and methodology in

our study. On one hand, the size of our data is not big enough, which it may affect our

analytical results. On the other hand, we should perform similar analysis on other more

fields and investigate the common features of collaboration patterns of other fields. In our

study, we only highlight the importance of first author and reduce the effect of other

coauthors by means of the directed edges in the collaboration network. Of course, if we

want to highlight the important position of corresponding authors, we can conduct a similar

analysis. In future works, we will combine different algorithms of credit allocation and

directed network to explore whether these methods have a significant effect on the rank of

scientists and extend the directed scientific collaboration network to directed and weighted

network.
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Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of

complex networks in nature and society. Nature, 435(7043), 814.

1342 Scientometrics (2018) 114:1327–1343

123

http://arxiv.org/abs/0809.1906


Qi, M., Zeng, A., Li, M., Fan, Y., & Di, Z. (2017). Standing on the shoulders of giants: The effect of
outstanding scientists on young collaborators’ careers. Scientometrics, 111(3), 1839–1850.

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying com-
munities in networks. Proceedings of the National Academy of Sciences of the United States of
America, 101(9), 2658–2663.

Sinatra, R., Wang, D., Deville, P., Song, C., & Barabsi, A. L. (2016). Quantifying the evolution of individual
scientific impact. Science, 354(6312), aaf5239.

Sonnenwald, D. H. (2007). Scientific collaboration. Annual Review of Information Science and Technology,
41(1), 643–681.

Tijssen, R. J. (2004). Is the commercialisation of scientific research affecting the production of public
knowledge? Global trends in the output of corporate research articles. Research Policy, 33(5),
709–733.

Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowl-
edge. Science, 316(5827), 1036–1039.

Yan, E., & Ding, Y. (2009). Applying centrality measures to impact analysis: A coauthorship network
analysis. Journal of the Association for Information Science and Technology, 60(10), 2107–2118.

Yan, E., & Ding, Y. (2011). Discovering author impact: A PageRank perspective. Information Processing
and Management, 47(1), 125–134.

Yan, E., Ding, Y., & Sugimoto, C. R. (2011). P Rank: An indicator measuring prestige in heterogeneous
scholarly networks. Journal of the Association for Information Science and Technology, 62(3),
467–477.

Yoshikane, F., Nozawa, T., & Tsuji, K. (2006). Comparative analysis of co-authorship networks considering
authors’ roles in collaboration: Differences between the theoretical and application areas. Sciento-
metrics, 68(3), 643–655.

Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., et al. (2017). The science of science: From the
perspective of complex systems. Physics Reports, 714–715, 1–73.

Zhai, L., Li, X., Yan, X., & Fan, W. (2014). Evolutionary analysis of collaboration networks in the field of
information systems. Scientometrics, 101(3), 1657–1677.

Scientometrics (2018) 114:1327–1343 1343

123


	Identifying important scholars via directed scientific collaboration networks
	Abstract
	Introduction
	Methods
	Network construction and data
	Centrality measures
	Degree centrality
	Betweenness centrality
	PageRank
	The SIR model
	HITS algorithm


	Results and analysis
	Descriptive analysis for collaboration in complex systems (2001--2009)
	Comparative analysis of network properties
	Node centrality analysis

	Discussion
	Acknowledgements
	References




