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Abstract
Neurofilaments are transported along axons stochastically in a stop-and-go manner, cycling
between brief bouts of rapid movement and pauses that can vary from seconds to hours in
length. Presently the only way to analyze neurofilament pausing experimentally on both long
and short time scales is the pulse-escape method. In this method, fluorescence photoactivation
is used to mark a population of axonal neurofilaments and then the loss of fluorescence from
the activated region due to neurofilament movement is monitored by time-lapse imaging. Here
we develop a mathematical description of the pulse-escape kinetics in terms of the rate
constants of a tested mathematical model and we show how this model can be used to
characterize neurofilament transport kinetics from fluorescence photoactivation pulse-escape
experiments. This combined experimental and computational approach is a powerful tool for
the analysis of the moving and pausing behavior of neurofilaments in axons.

Keywords: axon, neurofilament, cytoskeleton, slow axonal transport, mathematical modeling

1. Introduction

Neurofilaments, which are the intermediate filaments of nerve
cells, are abundant space-filling cytoskeletal polymers that
function to increase axonal caliber, thereby increasing the
rate of propagation of the nerve impulse. These polymers are
assembled in the neuronal cell body and are transported along
axons in the slowest phase of axonal transport, known as slow
axonal transport, at average velocities of 0.2–3 mm d−1 [1].
For many years, it was assumed that this is a slow and
continuous movement [2], but it is now believed to be caused
by brief bouts of rapid movement interrupted by pauses
that can vary from seconds to hours in length [3–5]. The
filaments move both forward (anterograde) and backwards
(retrograde) along microtubule tracks, but the net direction
is anterograde because anterograde movements predominate.
The slow average velocity is caused by these bidirectional
excursions as well as the large fraction of time that the
neurofilaments spend pausing.

The kinetics of neurofilament transport can be studied in
nerves on a time scale of days or months using radioisotopic

pulse-labeling, or in single axons on a time scale of seconds,
minutes or hours using fluorescence microscopy [1, 6]. One
fluorescence microscopic technique involves real-time or time-
lapse imaging of single-neurofilament polymers tagged with
fluorescent fusion proteins [7]. Since neurofilaments are just
10 nm in diameter and are typically spaced just tens of
nanometers apart from each other in axons, the only way
to track their movement by fluorescence microscopy is to
observe them in isolation. Practically, this can be accomplished
in cultured neurons by observing neurofilament movement
through naturally occurring or photobleached gaps in the
axonal neurofilament array [7–10]. When fluorescently tagged
neurofilaments enter these gaps they can be resolved because
they are the only fluorescent structures. However, it is
important to note that this method tends to underestimate the
long-term pausing behavior of the filaments because only those
filaments that move into the gaps can be tracked.

To address the limitations of single-neurofilament
tracking experiments, we developed a complementary
fluorescence microscopic technique that permits a population-
level analysis of neurofilament transport kinetics in single
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Figure 1. A six-state kinetic model of neurofilament transport. Cartoon depicting one interpretation of the various kinetic states. There are
four on-track states (a, a0, r, r0) and two off-track states (ap, rp). On-track neurofilaments move along microtubules in an anterograde or
retrograde direction (states a and r, respectively) with velocities va and vr. The anterograde movements are powered by kinesin motors and
the retrograde movements by dynein motors. While in the on-track moving states, the filaments can switch to on-track pausing states a0 and
r0, governed by the rate γ10. When in the on-track pausing states, the filaments can either switch back to their respective on-track moving
states, governed by the rate γ01, or they can switch to the corresponding off-track pausing states ap or rp. Cycling between the on and
off-track pausing states is governed by the rates γoff and γon. Reversals can happen in all pausing states, governed by the reversal rate
constants, γar and γra.

axons [11]. This fluorescence photoactivation pulse-escape
method uses photoactivation of neurofilament polymers tagged
with a photoactivatable fluorescent fusion protein to create a
population of fluorescent neurofilaments in a short segment
of axon. Over time the fluorescence in the activated region
declines due to the rapid intermittent movement of the
photoactivated neurofilament polymers, and this can be
tracked by time-lapse imaging. Since there is little soluble
neurofilament protein in axons, there is no measurable
contribution of diffusion to the loss of fluorescence and
therefore the decay kinetics are due entirely to neurofilament
transport [11]. In the current paper, we develop an analytical
solution of the pulse-escape decay kinetics in terms of the rate
constants of a tested mathematical model and we present a
computational method for extracting the kinetic parameters of
neurofilament transport in fluorescence photoactivation pulse-
escape experiments on short and long time scales.

2. A mathematical model of neurofilament transport

The first mathematical model of neurofilament transport
was proposed by Blum and Reed [12]. That model, which
predated the observation of neurofilament movement by live-
cell imaging, assumed the existence of a hypothetical engine
that moved unidirectionally at a fixed velocity. Microtubules
were considered to interact directly with the engine and
neurofilaments were considered to move by riding piggy-back
on the moving microtubules. By computational simulation of
the equations of the model, the authors were able to reproduce
the bell-shaped waves of radiolabeled neurofilaments observed
in radioactive pulse-labeling experiments in vivo. More
recently, we have described a mathematical model for
neurofilament kinetics that reproduces the motile behavior
of single neurofilaments observed by time-lapse imaging of
cultured neurons on a time scale of second or minutes as
well as the bell-shaped waves observed for large ensembles

by radioisotopic pulse-labeling on a time scale of days or
weeks [13, 14]. This model invokes six kinetic states (see
figure 1): anterograde and retrograde moving states (a, r),
anterograde and retrograde short-term pausing states (a0, r0),
and anterograde and retrograde long-term pausing states
(ap, rp). In the anterograde and retrograde moving states, the
neurofilaments are driven by molecular motors (kinesins and
dyneins) along microtubule tracks. The short-term pausing
states were introduced to generate the observed bursts of
rapid intermittent movement observed in single-neurofilament
tracking experiments in cultured neurons on a time course of
seconds or minutes. The long-term pausing states, not visible
in the short-term single filament tracking experiments, were
introduced to reproduce waves of radiolabeled neurofilaments
observed in radioisotopic pulse-labeling experiments in vivo
on a time course of weeks or months [13] and were
verified later in cultured neurons using the fluorescence
photoactivation pulse-escape technique [11]. We refer to the
short-term and long-term pausing states as ‘on-track’ and ‘off-
track’ respectively [11] (see section 7). Note, however, that a
model in which there is just a single long-term pausing state can
also reproduce the bell-shaped waves in radioisotopic pulse-
labeling experiments [15].

We should point out that the mathematics of the types
of partial differential equations that are used in the model in
[14] and in this study are well-developed and mathematical
models used for fast axonal transport of organelles (e.g. [16])
have similar structure. For example, traveling wave solutions
of these partial differential equations have been discussed in
[17] and [18], and proofs of the existence of solutions to these
equations can be found in [19]. Times of equilibration have
been discussed for a two-state model [20]. The time of transit
of motor driven particles transported from a source to a target
along an axon has been addressed using a three-state model
(anterograde movement, retrograde movement, pausing) in
[21, 22] and a two-state model for NMDA receptor trafficking
in axons has been discussed in [23].
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(a)

(b)

(c)

Figure 2. Schematic diagram of a pulse-escape experiment.
(a) Before activation the axon contains non-activated (i.e. non-
fluorescent) neurofilaments tagged with photoactivatable GFP (dark
gray lines). (b) Photoactivation causes the neurofilaments within the
activated region (black rectangle) to become fluorescent (red lines).
(c) After photoactivation, the rapid intermittent movement of the
neurofilaments causes fluorescent neurofilaments to move out of the
activated region and non-fluorescent neurofilaments to move in. The
kinetics of the loss of fluorescence in the activated region reflects the
kinetics of departure of the activated neurofilaments. Note that while
in principle neurofilaments that have left the window can return, in
practice this happens rarely because the frequency of reversals is
low.

3. The pulse-escape method

In contrast to the analysis of neurofilament movement through
photobleached or naturally occurring gaps in the axonal
neurofilament array, the pulse-escape method is a population-
based approach [11] (figure 2). While it is possible to track the
escape of individual filaments from the activated regions on
time scales of seconds or minutes [11], the real power of this
technique comes from tracking the loss of the fluorescence on
a time scale of several hours. When we do this we consistently
observe a biphasic decay profile [11, 24]. Initially there is a
more rapid decrease in the fluorescence within the activation
window due to the departure of neurofilaments that are moving
on-track at the time of activation. At later times, there is a
slower decline in the fluorescence due to the departure of
neurofilaments that are immobile (off-track) at the time of
activation and which can only escape the window after they
have cycled into the mobile state. Hence, the time course
of fluorescence decay at longer times reflects the fraction
of neurofilaments that are pausing off-track at the time of
activation and their rate of transition into the mobile states.
Thus we conjecture that the overall time course of fluorescence
decay from the activation window holds complete information
about the neurofilament transport kinetics and that tracking

the fluorescence decay on a time scale of several hours
should therefore reveal the pausing behavior of neurofilaments
residing within the activation window on that time scale.

In the following sections we develop a systematic
computational method to extract the rate constants in our
mathematical model of neurofilament transport from the
fluorescence photoactivation pulse-escape experiments and
we show how this can be used to characterize the moving
and pausing behavior of neurofilaments in axons. To explore
the utility of this approach, we analyze two published pulse-
escape data sets for neurofilaments, one from axons of cultured
neurons from the superior cervical ganglia (SCG) of newborn
rats [11] and the other from the dorsal root ganglia (DRG) of
newborn mice [24]. Each of these neuronal cell types exhibits
biphasic pulse-escape decay kinetics that can be fit with a
double-exponential function, but with different small and large
exponents (figure 3).

4. Mathematical modeling of the pulse-escape
experiment

In order to interpret the decay curves in figure 3, we mimic
a pulse-escape experiment using a continuous representation
of our six-state model for the neurofilament transport kinetics.
The equations of motion are given by
∂ρa

∂t
= −va

∂ρa

∂x
− γ10ρa + γ01ρa0 (1)

∂ρr

∂t
= −vr

∂ρr

∂x
− γ10ρr + γ01ρr0 (2)

∂ρa0

∂t
= −(γ01 + γar + γoff)ρa0 + γ10ρa + γraρr0 + γonρap

(3)

∂ρr0

∂t
= −(γ01 + γra + γoff)ρr0 + γ10ρr + γarρa0 + γonρrp

(4)

∂ρap

∂t
= −(γon + γar)ρap + γoffρa0 + γraρrp (5)

∂ρrp

∂t
= −(γon + γra)ρrp + γoffρr0 + γarρap, (6)

where va and vb denote the anterograde and retrograde veloc-
ities of the moving filaments, and ρa, ρa0, ρap, ρr, ρr0, ρrp

denote the distributions of the neurofilaments in the kinetic
states a, a0, ap, r, r0, rp along the axon length x. The rate
constants γ01, γ10, γoff, γon, γar and γra are defined in figure 1.
If neurofilaments enter the axon at the proximal end at a rate
jin, the uniform equilibrium distributions of neurofilaments in
the kinetic states can be obtained readily by solving equations
(1)–(6), i.e.

ρa = ( jin/va); ρa0 = q1( jin/va); ρap = q1q2( jin/va)

ρr = q3( jin/va); ρr0 = q1q3( jin/va); ρrp = q1q2q3( jin/va),

(7)

with

q1 ≡ γ10/γ01; q2 ≡ γoff/γon; q3 ≡ γar/γra. (8)
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(a) (b)

Figure 3. Pulse-escape kinetics for (a) cultured rat superior cervical ganglion (SCG) neurons and (b) cultured mouse dorsal root ganglion
(DRG) neurons. Data from [11] and [24]. The solid black lines represent curve fits using a double exponential function of the form
A1 exp(−t/τ1) + A2 exp(−t/τ2). The fitting parameters are A1 = 0.849, A2 = 0.160, τ1 = 111 min and τ2 = 11.8 min for the SCG neurons
and A1 = 0.854, A2 = 0.142, τ1 = 562 min and τ2 = 5.89 min for the DRG neurons. The average activation window length was 22 μm for
the SCG neurons and 24.5 μm for the DRG neurons. To better indicate the double exponential behavior of the data in (a) we show the
exponential fits for small times (dashed, gray) and large times (full, gray).

In terms of the total neurofilament distribution (summated
over all states)

ρ ≡ ρa + ρa0 + ρap + ρr + ρr0 + ρrp

= ( jin/va)(1 + q1(1 + q2))(1 + q3), (9)

we can write

ρa = ηρ; ρa0 = ηq1ρ; ρap = ηq1q2ρ

ρr = ηq3ρ; ρr0 = ηq1q3ρ; ρrp = ηq1q2q3ρ, (10)

with

η ≡ 1

(1 + q1(1 + q2))(1 + q3)
. (11)

Before the neurofilaments (tagged with photoactivatable green
fluorescent protein) are photo-activated, we assume that their
kinetic states obey the equilibrium distributions in (7). At the
activation time t = 0, all neurofilaments within an activation
window extending between position x = 0 and x = a along the
axon are activated. As in the experimental protocol, we follow
the distribution of the photoactivated neurofilaments only (the
other ones are invisible) using equations (1)–(6), utilizing
the linear superposition principle valid for sets of linear
equations. The fluorescence within the activation window,
which is a relative measure of the neurofilament content, is then
given by

Q(t) =
∫ a

0
(ρa(x, t) + ρa0(x, t) + ρap(x, t)

+ρr(x, t) + ρr0(x, t) + ρrp(x, t)) dx. (12)

Before we engage with a mathematical analysis of Q(t), we
will discuss numerical solutions of equations (1)–(6) and their
subsequent integration according to equation (12). The results
are shown in figure 4 for an arbitrary, though not atypical,

set of rate constants. As in the experiments, we observe an
initial rapid decay due to the departure of neurofilaments in
the mobile (on-track) state followed by a slower exponential
decay due to the mobilization of filaments that were initially
in the immobile (off-track) state. In principle, the decay
kinetics could be affected by reversals because this could
allow neurofilaments that have left the activated region to re-
enter. However, we have shown previously that neurofilament
reversals are rare [8, 9, 25], with rough estimates for γra and
γar of <1 × 10−4 s−1 based on live imaging studies and
computational modeling [13, 14]. To examine the influence
of reversals on the decay kinetics, we simulated pulse-escape
experiments over a 33 h period using values for γra and γar

ranging from 10−5 to 10−7 s−1 (see inset in figure 4). The
curves deviate from the normal long-term exponential decay
at later times, with the time of the divergence being earlier for
higher reversal rates. However, the curves are indistinguishable
in the first several hours after activation, which is the typical
duration of our pulse-escape experiments, and thus we can
ignore reversal events in the following analysis.

Continuing with our mathematical analysis we take the
derivative of equation (12) with respect to time, utilizing
equations (1)–(6), and find the following relation:

dQ

dt
= −va(ρa(a, t) − ρa(0, t)) − vr(ρr(a, t) − ρr(0, t)).

(13)

Because of the convective nature of equations (1) and (2),
and because initially ρa(x < 0, 0)= 0 and ρr(x > a, 0)= 0 (i.e.
neurofilaments outside the activation window are not activated)
it is clear that ρa(0, t) = 0 and ρr(a, t) = 0, yielding

dQ

dt
= −vaρa(a, t) + vrρr(0, t). (14)
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(a)

(b)

(c)

Figure 4. Dependence of the decay kinetics on the reversal rates.
Simulations of the relative fluorescence decay Q(t)/Q(0) within an
activation window of length a = 10 μm using the rate constants
γ10 = 0.05 s−1, γ01 = 0.005 s−1, γoff = 5.0 × 10−4 s−1 and
γon = 2.0 × 10−4 s−1 for three different sets of reversal rate
constants, i.e. (a) γar = 1.0 × 10−7 s−1 and γra = 2.0 × 10−7 s−1,
(b) γar = 1.0 × 10−6 s−1 and γra = 2.0 × 10−6 s−1 and
(c) γar = 1.0 × 10−5 s−1 and γra = 2.0 × 10−5 s−1, with the ratio
γar/γra = 0.5 in each case. The decay curves are superimposable at
early times (<300 min), with a faster initial decay followed by a
slower exponential decay. At longer times (>300 min), the curves
transition to an even slower exponential decay due to the influence
of the reversals and diverge in a manner dependent on the reversal
frequency.

Ignoring reversals (see above), we can split the set
of equations (1)–(6) into two sets of linear equations, one
anterograde and one retrograde:

∂ρa

∂t
= −va

∂ρa

∂x
− γ10ρa + γ01ρa0 (15)

∂ρa0

∂t
= −(γ01 + γoff)ρa0 + γ10ρa + γonρap (16)

∂ρap

∂t
= −γonρap + γoffρa0, (17)

and

∂ρr

∂t
= −vr

∂ρr

∂x
− γ10ρr + γ01ρr0 (18)

∂ρr0

∂t
= −(γ01 + γoff)ρr0 + γ10ρr + γonρrp (19)

∂ρrp

∂t
= −γonρrp + γoffρr0, (20)

which can be solved separately.

To obtain insights into how to interpret the experimental
decay curves in terms of the rate constants of the model,
we consider Q(t) separately for small times and for large
times. Since the governing equations (1)–(6) are linear we can
perform a Laplace transformation [26] of equations (15)–(20)
with respect to time, i.e.

ρ̃a,r,a0,r0,ap,rp(x, s) =
∫ ∞

0
ρa,r,a0,r0,ap,rp(x, t) exp(−st) dt, (21)

and eliminate all functions, except ρ̃a(s, x) and ρ̃r(s, x)

to find

ρ̃a(x, s) = ρη

s

(
1 − exp

(
− s f (s)

va
x

))

ρ̃r(x, s) = q3ρη

s

(
1 − exp

(
− s f (s)

vr
(x − a)

))
. (22)

Note that the reversal rate ratio q3 enters into (22) even
though we neglect reversals because it determines the
relative proportion of neurofilaments in the anterogradely
and retrogradely moving states (equation (10)). A Laplace
transformation of the fluorescence in the activated region Q(t)
(see equation (12)) yields

Q̃(s) = aρ

s
− vaηρ

s2

(
1 − exp

(
− s f (s)

va
a

))

+vrq3ηρ

s2

(
1 − exp

(
s f (s)

vr
a

))
, (23)

with η defined in equation (11), and

f (s) = 1 + γ10
s + γon + γoff

s2 + s(γ01 + γon + γoff) + γ01γon
. (24)

4.1. The decay at short times

First we consider the pulse-escape decay kinetics at short
times after activation. We expand f (s) and Q̃(s) into a
Taylor series in powers of 1/s and then perform an inverse
Laplace transformation (see appendix A for details). After
some lengthy calculations, we find

Q(t)

Q(0)
= 1 − η

(
�

(
t − a

va

)
exp(−εa)

+q3�

(
t + a

vr

)
exp(εr)

)
− η

a
(va − q3vr) t

+η

a

(
va exp(−εa)�

(
t− a

va

)
−vrq3 exp(εr)�

(
t+ a

vr

))
t

+1

2
ηγ10γ01 exp(−εa)

(
t − a

va

)2

�

(
t − a

va

)

+ 1

2
ηq3γ10γ01 exp(εr)

(
t+ a

vr

)2

�

(
t+ a

vr

)
(25)

with

εa = aγ10

va
, εr = aγ10

vr
, (26)

and the Heaviside step function �(x) given by

�(x) =
{

1 for x > 0
0 for x < 0

.
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The average velocity of neurofilament movement was
derived in [14] and is given by

v̄ = γrava + γarvr

(1 + q1(1 + q2))(γar + γra)
. (27)

The slope α of Q(t)/Q(0) for t < a/va and t < a/ |vr|
(see second term on the right-hand side of equation (25)), is
linearly related to the average velocity (27) by

α = 1

a

1 − q3(vr/va)

1 + q3(vr/va)
v̄. (28)

Note that this indicates that the slope of the decay curve
at short times is dependent on the length a of the activation
window in addition to the velocities. In the special case where
va = −vr ≡ v and εa ≡ −εr ≡ ε, equation (25) reduces to

Q(t)

Q(0)
=

⎧⎪⎪⎨
⎪⎪⎩

1 − v
a

1
1+q1(1+q2 )

t = 1 − αt for t < a/v

1− exp(−ε)

1+q1(1+q2 )
− v

a
1−exp(−ε)

1+q1(1+q2 )
t

+ 1
2γ10γ01

exp(−ε)

1+q1(1+q2 )

(
t − a

v

)2
for t > a/v

,

(29)

with the average velocity in this case

v̄ = v

1 + q1(1 + q2)

(
γra − γar

γra + γar

)
= αa

(
1 − q3

1 + q3

)
, (30)

and ε ≡ aγ10/v.
For times t < a/v (i.e. less than the time it takes a

moving neurofilament to escape the activation window), the
decay is linear with a slope α (i.e. proportional to the average
neurofilament velocity). For small activation windows (e.g. a
few micrometers in length), this corresponds to a time interval
a/v on the order of seconds. At time t = a/v, the slope changes
discontinuously by the factor 1−exp(−ε). For small activation
windows or smaller values of γ10 (i.e. if ε is small), this change
in slope is noticeable (see arrow in inset in figure 5).

4.2. The decay at long times

Now we consider the pulse-escape decay kinetics at longer
times. The linearity of the curves on a log-scale at long times
indicates an exponential decay (see figure 4) and thus we can
extract the asymptotic exponential decay for t → ∞, i.e.

Q(t) = Q∞ exp(−γdt) (31)

with a decay constant γd obtained directly from the Laplace
transform Q̃(s) by expanding it for small s, i.e.

Q̃(s) = Q∞
1

s + γd
≈ Q∞

γd

(
1 − s

γd

)
, (32)

and comparing it directly with the expansion of Q̃(s) in
equation (23). First we expand f (s) into a Taylor series with
respect to s, i.e.

f (s) = q1κ − (q1/γ01)βs + (
q1/γ

2
01

)
δs2 + O(s3) (33)

with the coefficients

κ = 1/q1 + 1 + q2

β ≡ (1 + q2)
2 + q2q4

δ ≡ (1 + q2)
3 + 2q2q4(1 + q2) + q2q2

4, (34)

Figure 5. Comparison of the relative fluorescence decay Q(t)/Q(0)
in our model with the approximations for small and large times for
two different lengths of activation window, i.e. a = 10 μm (bottom)
and a = 50 μm (top). The dashed lines indicate the approximations
(equation (29)) for small times and the dashed–dotted lines indicate
the approximations (equation (31)) for large times. The inset shows
the initial fluorescent decay for the 10 μm window at small times
together with the short time approximations for t < a/va

(long-dashed lines) and for t > a/va (short-dashed line) (equation
(29)). The arrow points to the cusp point at t = a/va. The rate
constants are γ01 = 0.005 s−1, γ10 = 0.05 s−1, γon = 2 × 10−4 s−1

and γoff = 5 × 10−4 s−1.

and q4 = γ01/γon. Then we expand equation (23) for small s
and utilize equations (33) and (34) to obtain

Q̃(s) = A − Bs + o(s2) = A

(
1 − B

A
s

)
+ o(s2)

= A

(
1 − s

γd

)
+ o(s2) (35)

with

A = aρηq1

γ01

(
β(1 + q3) + 1

2
κ2ε

(
1 − q3

va

vr

))

B = aρηq1

γ 2
01

(
δ(1 + q3) + κβε

(
1 − q3

va

vr

)

+1

6
κ3ε2

(
1 + q3

(
va

vr

)2))
(36)

and

ε = aγ10

va
. (37)

Comparing with equation (32), we find for the asymptotic
pulse-escape decay exponent

γd = γ01

β + 1
2

κ2

1+q3
ε
(
1 − q3

va
vr

)
δ + κβ

1+q3
ε
(
1 − q3

va
vr

) + 1
6

κ3

1+q3
ε2

(
1 + q3

(
va
vr

)2) . (38)

and

Q∞ = A2

B
= Aγd .
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For small activation windows, i.e. a � va/γ10 and a �
|vr| /γ10 or equivalently εa, |εr| � 1, the decay exponent
becomes independent of the size of the activation window,
i.e.

γd ≈ γ01
β

δ
, (39)

which coincides with the smallest pole of f (s) given by
equation (24) and is directly related to the inverse average
pause time of the neurofilaments (see [14]). In this limit of
small window sizes, the exponential decay of fluorescence
probes directly the pausing kinetics of neurofilaments because
neurofilaments that switch into the moving states escape
the activation window without cycling back into pausing
states. If the window sizes are larger, i.e. εa,r are not small,
neurofilaments in the mobile states may switch back into a
pausing state before leaving the activation window, and this
gives rise to a dependence of the decay exponent on the size
of the activation window that is described by the dependence
of equation (38) on ε.

As noted above for the decay at short times (see
equation (29)), the reversal rate ratio q3 enters into equation
(38) for the decay exponent γd (even though we neglect
reversals) because this ratio determines the relative proportion
of neurofilaments in the anterogradely and retrogradely
moving states. In the special case of equal anterograde and
retrograde speeds, i.e. vr = −va, the dependence on the
reversal rates disappears, i.e.

γd = γ01
β + 1

2εκ2

δ + κβε + 1
6κ3ε2

Q∞ = aρ

κ

(
β + 1

2κ2ε
)2

δ + κβε + 1
6κ3ε2

. (40)

In figure 5 we compare the numerical solutions of
equations (1)–(6) with the large-time approximation in
equation (31). The exponent γd and the prefactor Q∞ both
agree well with the numerical solutions for two different
window sizes.

Note that the length a of the activation window enters
into the above expressions for the long-term decay, as it did
for the short-term decay, through the parameter ε = aγ10/va.
For example, figure 6 shows the simulated pulse-escape decay
kinetics for four different activation window sizes. For any
given set of rate constants, the decay kinetics are faster at
both short and long times for shorter activation windows.
This has important practical implications for the design and
interpretation of pulse-escape experiments, particularly when
comparing pulse-escape kinetics in different axons or at
different locations along the same axon (see section 7).

5. Results

The analysis above now permits us to extract kinetic
rate constants of neurofilament transport from fluorescence
photoactivation pulse-escape experiments. To demonstrate
this, we use the published experimental data shown in

Figure 6. Influence of the window size on the decay kinetics. The
relative fluorescence decay Q(t)/Q(0) is shown for four different
window sizes with γ01 = 0.01 s−1, γ10 = 0.4 s−1,γon = 2 × 10−4 s−1

and γoff = 5 × 10−4 s−1. Note that not only the initial slope
decreases with increasing window size, as predicted by equation
(28), but also the time-constant of the long-term exponential decay.

figure 3 for axons of cultured neurons from rat SCG and
mouse DRG [11, 24]. These data show the decline in the
fluorescence of the activation window over a 2 h period (Q (t)),
normalized to the fluorescence at t = 0, immediately after
activation (Q (0)). Published measurements of the average
velocities of neurofilament movement have ranged from 0.38
to 0.53 μm s−1 for va and from −0.49 to −0.60 μm s−1

for vr [8, 9, 24, 25, 27]. For the purposes of this analysis,
we assume va = 0.5 μm s−1 and vr = −0.5 μm s−1. As
described earlier, the experimental data are fitted well by a
double exponential function, which allows us to read off the
initial slope α and the time constant of the exponential decay
γd for long times. As a result, the four rate constants γ01, γ10,
γon and γoff are constrained by the two equations (29) and (40),
leaving us with two independent rate constants (we chose γ01

and γ10). These rate constants are then determined by fitting
the numerical solutions of our model to the experimental data.
Specifically, we compute the pulse-escape decay curves for
all possible combinations of γ01 and γ10 and determine the
least square error of the computed curves with respect to the
experimental data. Finally, we optimize the fit at longer times
by repeating this procedure for slightly perturbed values of
γd . The approach of using asymptotic expansions of solutions
of partial differential equations to extract parameters through
comparison with experiments has also been utilized in [28].

For the pulse-escape data shown in figure 3, the double
exponential fits to the data deliver α = A1/τ1 + A2/τ2 =
3.50 × 10−4 s−1, and γd = 1/τ1 = 1.5 × 10−4 s−1 for the
SCG neurons, and α = A1/τ1 + A2/τ2 = 4.20 × 10−4 s−1,
and γd = 1/τ1 = 2.97 × 10−5 s−1 for the DRG neurons.
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(a)

(b)

(d )

(c )

Figure 7. Fitting the experimental data. The contour plots (a) and (c) show the goodness of fit of the model to the pulse-escape data in the
two dimensional parameter space γ01, γ10 for the SCG and DRG neurons respectively. For each combination of values for the rate constants
γ01 and γ10, the other two rate constants γon and γoff were adjusted to obtain the best match to the initial slope and the long-term exponential
decay using our analytical approximations for short and long times (see equations (29) and (31)). Then we simulated the decay kinetics
using those parameter values and estimated the goodness of fit to the experimental data using a least squares method. This was repeated for
all combinations of γ01 and γ10 in the parameter space and the goodness of fit was plotted with a gray scale lookup table where the lighter the
color, the better the fit. The red lines represent the contour lines of equal error, and the red spots indicate the points of least error, which
correspond to the optimal values for γ01 and γ10. The graphs in (b) and (d) compare simulations of the relative fluorescence decay
Q(t)/Q(0) (performed with the optimized rate constants) to the experimental decay kinetics for the SCG and DRG neurons, respectively.

Figures 7(a) and (c) show contour plots of the inverse error in
the γ10–γ01 plane, where lighter gray indicates a smaller error.
For each data set, we find a single peak in the contour plot,
which corresponds to the optimum set of values for γ01 and
γ10. Repeating the procedure for with slightly perturbed values
of γd yields a minimum error for γd = 1/τ1 = 1.60×10−4 s−1

for the SCG neurons but no decrease in the error for the DRG
neurons, confirming that γd = 1/τ1 = 2.97 × 10−5 s−1 was
the best fit. In figures 7(b) and (d), we compare the resulting
optimal computed decay curves with the experimental data.

Table 1 shows the computed kinetic rate constants based
on the optimized numerical solutions shown in figure 7.
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Table 1. Comparison of the extracted rate constants for the SCG and
DRG neurons and the predicted kinetic features of neurofilament
transport in these cells. The rate constants γ01, γ10, γon, γoff are
defined in figure 1. 〈Ton〉 and 〈Toff〉 represent the average duration of
time that the filaments spend on- and off-track, respectively [14].
The fractions of off-track and on-track neurofilaments are given by
foff = (ρap + ρrp)/ρ and fon = (ρa + ρa0 + ρr + ρr0)/ρ respectively
(see equations (10), (11)). The fraction of on-track moving
neurofilaments is given by frun = (ρa + ρr)/ρ.

Rates SCG neurons DRG neurons

γ01 (s−1) 2.29 × 10−3 4.80 × 10−3

γ10 (s−1) 4.70 × 10−2 3.40 × 10−2

γon (s−1) 2.34 × 10−4 3.17 × 10−5

γoff (s−1) 4.95 × 10−4 1.81 × 10−4

〈Ton〉 (min) 5.98 3.35
〈Toff〉 (min) 71.2 526
foff (%) 66.9 83.3
fon (%) 33.1 16.7
frun (%) 1.54 2.06

Knowing these kinetic rate constants, we can characterize the
pausing behavior. The rate constant γon was approximately
seven times smaller for the DRG neurons and the rate
constant γoff was approximately three times smaller. The rate
constants γ01 and γ10 were approximately 2 times larger and
1.4 times smaller, respectively. Consequently, the average off-
track pause time given by 〈Toff〉 = 1/γon [14] was 526 min for
the DRG neurons versus 71.2 min for the SCG neurons, and
the average on-track pause time given by 〈Ton〉 = 1/(γ01+γoff)

[14] was 3.4 min for the DRG neurons versus 6 min for
the SCG neurons. Thus neurofilaments in the DRG neurons
exhibit longer off-track pauses and shorter on-track pauses.
The average time of all pauses (both on- and off-track) is
given by [14]

〈T 〉 = 1

λ−
− γ01 − λ−

λ−λ+
(41)

with

λ± = 1
2 (γ01 + γon + γoff) ∓ 1

2

√
(γ01 + γon + γoff)2 − 4γ01γon

(42)

and is similar for both neuronal cell types, i.e. 22.6 min for the
SCG neurons versus 23.3 min for DRG neurons.

To calculate the net average velocity of neurofilament
transport we need to know the balance of anterograde and
retrograde movements, which are dictated by the reversal
rate constants γar and γra. Since the pulse-escape experiments
are blind to the direction in which the neurofilaments leave
the activation window, we cannot determine the reversal
rate constants using this method (see above). However, we
can extract the average transport velocity up to the factor
(1 + q3)/(1 − q3), where q3 is the ratio of the reversal rates
γar/γra (see equation (30)).

Using equation (7), we can see that this ratio is identical
to the fraction of anterogradely and retrogradely moving
neurofilaments, i.e.

ρa + ρa0 + ρap

ρr + ρr0 + ρrp
= 1

q3
= γra

γar
, (43)

which has been determined using single-neurofilament
tracking experiments to be q3 = 31/69 = 0.450 for rat SCG
neurons [9, 14]. Hence for these neurons we find

v̄SCG = αa
1 − q3

1 + q3
= 0.252 mm d−1. (44)

Single-neurofilament tracking is not possible in DRG
neurons due to their high neurofilament content and thus
the relative proportion of anterogradely and retrogradely
moving neurofilaments has not been determined in these cells.
However, assuming the same ratio as for SCG neurons, we
find

v̄DRG = αa
1 − q3

1 + q3
= 0.337 mm d−1. (45)

6. Pulse-escape in the presence of diffusion

So far we have ignored diffusion because neurofilament
proteins are almost fully assembled into neurofilament
polymers in neurons and the polymers are too large to
diffuse appreciably. Thus there is no loss of fluorescence
from the activation window in pulse-escape experiments
when neurofilament transport is inhibited [11]. However,
the pulse-escape fluorescence photoactivation technique is
also a potentially powerful method for studying the slow
axonal transport of other cargoes for which this assumption
may not hold. For example, variants of the pulse-escape
technique have been used to study the slow axonal transport
of cytosolic proteins, which can spend a proportion of
their time in a diffusible state. The current model for
the movement of these proteins is a biased diffusion in
which transient and reversible associations of these proteins
with motor-driven cargo complexes are superimposed on a
backdrop of random diffusive motion, referred to as dynamic
recruitment mechanism [29]. For such proteins, fluorescent
photoactivation pulse-escape experiments result in diffusive
spreading of the activated pool with an anterograde bias
[30, 31]. Disabling the motors removes the anterograde bias,
but not the diffusive spreading. The resulting model for
the transport of cytosolic proteins is a combination rapid
intermittent movement (similar to on-track neurofilaments)
and passive diffusion.

To generalize our model so that it can also describe the
transport of cytosolic proteins, we can adapt our six-state
model for neurofilaments (figure 1) to allow for diffusion in
the off-track state (see also [19]). According to this model,
cytosolic proteins cycle between an on-track state in which
they associate with motor-driven complexes or cargoes that
exhibit rapid intermittent movement, and an off-track state
in which they dissociate from these moving structures and
become diffusible. Using this scheme, the equations now read
(including reversal events)
∂ρa

∂t
= −va

∂ρa

∂x
− γ10ρa + γ01ρa0 (46)

∂ρa0

∂t
= −(γ01 + γoff + γar)ρa0 + γ10ρa + γonρap + γraρr0

(47)
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∂ρap

∂t
= −(γon + γar)ρap + γoffρa0 + γraρrp + D0

∂2ρap

∂x2

(48)

∂ρr

∂t
= −vr

∂ρr

∂x
− γ10ρr + γ01ρr0 (49)

∂ρr0

∂t
= −(γ01 + γoff + γra)ρr0 + γ10ρr + γonρrp + γarρa0

(50)

∂ρrp

∂t
= −(γon + γra)ρrp + γoffρr0 + γarρap + D0

∂2

∂x2
ρrp (51)

where D0 is the diffusion coefficient of the transported
molecules and x is distance along the axon. The effects
of diffusion as described in equations (46)–(51) have also
been studied earlier by Kuznetsov et al [32] using numerical
solutions. Consistent with our analysis below, they observed
the formation of Gaussian traveling waves at long times after
initiation. As shown in [14, 17, 18], any pulse of labeled
proteins that moves in a stochastic and intermittent manner
will approach a Gaussian wave for large times, i.e.

ρ(x, t) = 1√
2πDt

exp

(
− (x − v̄t)

2Dt

)
, (52)

with the average rate of movement v̄ and the spreading rate D.
Assuming that the pool of photoactivated proteins is in kinetic
equilibrium, the average transport rate v̄, defined through

〈x(t)〉 =
∫ ∞

−∞
x(ρa(x, t) + ρa0(x, t) + ρap(x, t) + ρr(x, t)

+ρr0(x, t) + ρrp(x, t)) dx (53)

and (with appropriate initial conditions) given by v̄ = 〈x(t)〉/t,
is the same as in the case without diffusion because free
diffusion has no directional bias. For the spreading rate D
of the photoactivated proteins (relevant after a Gaussian wave
has formed) we find two components: the spreading rate in
the absence of diffusion and an additional term that is the
product of the fraction of proteins in the off-track states and
the diffusion coefficient D0 in the off-track states, i.e. (see
appendix B)

D = d

dt
(〈x2〉 − 〈x〉2) = Dkin + 2D0

q1q2

1 + q1(1 + q2)
(54)

with

Dkin = 2v̄2q1

1 + q1(1 + q2)

(
q2

γon
+ (1 + q2)

2

γ01

)
+ 2γarγra

γ 2
rev

1

γ10

× 1

1 + q1(1 + q2)

(
1+ γ01

γrev

γon + γrev

γon + γoff + γrev

)
(va−vr)

2.

(55)

The coefficient Dkin in equation (55) describes the
effective diffusive spreading due to random switching between
the kinetic states (see also [17, 18]) at times when a Gaussian
wave has formed, while the second term (which is proportional
to D0) describes the effects of diffusion of off-track proteins.
Note that the latter contribution is proportional to the fraction
of proteins in the off-track states q1q2/ (1 + q1(1 + q2)).

According to this model, the predicted initial decay
of the fluorescence in pulse-escape experiments is due

0 5 10 15 20 25 30

time(min)
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)/
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)

Figure 8. Simulation of a pulse-escape experiment for a cytosolic
protein that is diffusible in the off-track state. The computed relative
fluorescence decay Q(t)/Q(0) is shown for three different diffusion
coefficients, i.e. D0 = 0 (no diffusion), D0 = 0.1 μm2 s−1 and
D0 = 0.4 μm2 s−1. The solid curves indicate numerical solutions,
while the associated dashed lines indicate the analytical predictions
based on equation (56). The rate constants are γ10 = 0.1 s−1,
γ01 = 5.0 × 10−3 s−1, γon = 1.0 × 10−4 s−1 and γoff = 5.0 × 10−4 s−1.

predominantly to proteins in the off-track states diffusing out of
the activation window. This is because the decay of the initial
distributions (see equation (7)) of proteins in the activation
window in their respective kinetic states due to transitions
between those kinetic states is linear, whereas the diffusive
decay follows the stronger time dependence ∝ t1/2. Solving
the diffusion equation for the off-track proteins for small times
(see appendix C) yields the following expression for the initial
decay of the fluorescence
Q(t)

Q(0)
= 1 − 1

a

(va − q3vr)

(1 + q1(1 + q2))(1 + q3)
t

−1

a

2q1q2

1 + q1(1 + q2)

√
D0t

π
. (56)

The first term on the right-hand side describes the
escape of proteins in the on-track state, while the second
term describes the escape of proteins due to diffusion in
the off-track state. In figure 8, we compare the analytical
prediction for the initial fluorescent decay in equation (56)
with numerical simulations and find good agreement. The
significant qualitative difference in the decay kinetics in the
presence of passive diffusion makes the pulse-escape method
an excellent method to identify whether tracked objects exhibit
passive diffusion.

7. Discussion

In this paper we have developed an analytical solution for the
kinetics of neurofilament transport in fluorescent activation
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pulse-escape experiments based on the kinetic parameters in a
six-state kinetic model (see figure 1). According to this model,
neurofilaments cycle between distinct mobile and immobile
states during their transport along the axon. Neurofilaments in
the mobile (on-track) state move in rapid bursts of anterograde
or retrograde movement interrupted by short pauses that
average seconds or minutes in duration whereas neurofilament
in the immobile (off-track) state pause on average for an
hour or more without movement. We found that the decay
of fluorescence immediately after photoactivation is linear
and proportional to the average transport velocity (including
all movements and pauses), while the decay at longer times
provides information predominantly about the transitions
between the on and off-track pausing states. Utilizing the
expressions that we obtained for the decay kinetics on
short and long time scales, we have described a systematic
computational method to extract from the experimental data
optimal values for the rate constants in our model.

In our original description of the fluorescence
photoactivation pulse-escape technique we performed
stochastic simulations of pulse-escape experiments in rat
SCG neurons, simulating on-track transitions with a transition
probability matrix [11]. The transition probability matrix
comprised seven distinct velocity states and was obtained
directly from our single-neurofilament tracking data in the
same neuronal cell type [13]. To estimate the values of γon

and γoff in our model, we varied the values of these rate
constants systematically in order to match the experimental
data. The best match was obtained for γon = 0.000 275 s−1

and γoff = 0.004 44 s−1, which yielded predicted average
pause times of 〈Ton〉 = 29 s (on-track) and 〈Toff〉 = 61 min
(off-track) [11]3. Subsequently we showed that the seven-state
transition probability matrix that we used in those studies
could be simplified to a matrix based on just two velocities
(moving or pausing) and described by the rate constants γ01 =
0.041 s−1 and γ10 = 0.093 s−1 [14]. Importantly, however,
our original transition probability matrix and this simpler
matrix were both derived from the transitions measured in our
single-neurofilament tracking experiments assuming that those
kinetics represented the on-track kinetics, though in reality the
on-track and off-track states are kinetically defined concepts
and it is not possible to tell by looking at a single filament which
of those states it is in at any point in time. In the analytical
approach described in the present study we extract both the on-
and off-track kinetics from the pulse-escape decay kinetics,
eliminating the need to make this assumption. Moreover, our
new computational method allows us to probe the parameter
space more efficiently, ensuring that we obtain a single and
unique optimum.

Using our new approach, we obtained revised estimates
for the rate constants of neurofilament transport in SCG
neurons of γ01 = 0.002 29 s−1, γ10 = 0.004 70 s−1, γon =
0.000 234 s−1 and γoff = 0.000 495 s−1 (table 1). If we first
consider the rate constants that govern the transitions between
the on-track and off-track states, the revised estimate for γon

3 Note that the rate constants in the study of Trivedi et al [11] were expressed
in units corresponding to the average time-lapse interval. The values quoted
here are expressed in units of s−1.

is similar to our original estimate of γon = 0.000 275 s−1,
but the revised estimate for γoff is lower than our original
estimate of γoff = 0.004 44 s−1. This results in a ratio
γon/γoff = (0.000 234/0.000 495) = 0.47 that is about
nine-fold higher than in our original estimates (γon/γoff =
(0.000 274/0.004 44) = 0.062). However, since the average
time spent pausing off-track is dependent only on γon, our
revised estimate of 〈Toff〉 = 1/γon = 71.2 min agrees
reasonably well with our original estimate of 〈Toff〉 = 61 min.
Turning next to the rate constants that govern the transitions
between the on-track moving and pausing states, the ratio
γ01/γ10 = (0.002 29/0.0047) = 0.49 in the revised analysis
is similar to our original analysis (γ01/γ10 = (0.041/0.093) =
0.44) but the absolute magnitude of these rate constants is
about 20-fold lower. This suggests that our original analysis
overestimated the frequency of the transitions between the on-
track moving and pausing states and therefore underestimated
the durations of the on-track movements and pauses. Based
on our revised estimates for γ01 and γoff, we obtained
a revised estimate of the average on-track pause time of
〈Ton〉 = 1/(γ01 + γoff) = 5.98 min, which is about 12 times
longer than our original estimate 〈Ton〉 = 29 s. Overall these
revised analyses predict that the filaments spend an average
of 33% of their time on-track (table 1) compared to only
8% of their time on-track in our previous analyses. Thus
we conclude that single-neurofilament tracking experiments
in naturally occurring or photobleached gaps do not capture
the full extent of on-track neurofilament pausing and that the
apparent discrepancy between our new and original estimates
for the transport kinetics of neurofilaments in cultured rat SCG
neurons can be explained because some of the pauses that we
assumed originally off-track were actually on-track.

A limitation of the pulse-escape method is that it does
not yield information on the reversal rate constants. This is
because the method is blind to the direction of departure of
the neurofilaments from the photoactivated regions. It may
be possible to modify the pulse-escape method in future
studies to address this limitation, but since the average
velocity of neurofilament transport depends only on the ratio
of anterograde and retrograde movements and not on the
absolute magnitude of the reversal rate constants, it is still
possible to estimate the average velocity of neurofilament
transport in pulse-escape experiments if the velocity and
relative proportion of anterogradely and retrogradely moving
neurofilaments are known. In the case of the rat SCG neurons,
we estimated the average velocity, including on- and off-track
pauses, to be 0.25 mm d−1 (equation (44)). This is about a factor
of two smaller than our original estimate of 0.5 mm d−1 [11],
but it still falls within the 0.2–3 mm d−1 range obtained in
radioactive pulse-labeling experiments on mature axons in vivo
[33]. The explanation for the difference between our original
and current estimates is that our current analysis predicts
that the filaments spend 1.5% of their time moving (table 1),
whereas our previous analysis estimated the moving fraction
to be 3% [11].

An important advantage of our new analytical approach
is that it can permit the characterization of neurofilament
transport in mature axons for which single-neurofilament
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tracking is optically challenging due to the axon thickness or
abundance of neurofilaments. For example, we recently used
this approach to study neurofilament transport in long-term
myelinating co-cultures of DRG neurons and Schwann cells
[34]. Of course, it is important to note that the on- and off-track
states in our model are kinetic concepts that presently have no
physical correlates. As their names suggest, we have proposed
that they may represent populations of neurofilaments that
differ transiently in their proximity or engagement with
microtubule tracks. However, experimental proof of this will
require the identification of physical differences between these
kinetic pools and experimental interventions to show that
alterations in these pools have the expected effects on the
decay kinetics.

To further explore the utility of our approach, we
compared the pulse-escape kinetics in cultured rat SCG
neurons with cultured mouse DRG neurons, which exhibit
a biphasic decay profile with distinct kinetics [24]. A major
difference between the decay kinetics of these neuronal cell
types is in the proportion of the neurofilaments that remain
in the activated regions on long time scales. For example, on
average approximately 30% of the neurofilaments remained in
the activated regions for the SCG neurons after 2 h, whereas
approximately 70% remained for the DRG neurons. However,
perhaps surprisingly, our analyses predict that the average
velocity of neurofilament transport in the DRG neurons is
0.337 mm d−1 (equation (45)), which is 34% faster than
in the SCG neurons. The reason for this is that while the
slope of the decay kinetics in the DRG neurons is shallower
at later times, it is steeper at early times, and we have
shown that the initial slope is linearly related to the average
velocity of neurofilament transport (equation (28)). This can
be understood as follows. At the time of photoactivation,
neurofilaments in the mobile states leave the activation
window anterogradely and retrogradely proportional to their
relative fraction. Once the mobile neurofilaments have left
the activation window, the fraction of mobile (on-track)
neurofilaments becomes smaller, leaving a larger fraction of
immobile (off-track) neurofilaments behind. The departure
time from the activation window is now determined by the
time it takes for the neurofilaments to switch from the immobile
states into the mobile states. Hence the overall slower decay
of the fluorescent in the DRG neurons reflects longer dwell
times in the off-track states, but not a slower average velocity.
Specifically, our analyses predict that the average duration
of off-track pausing in the DRG neurons is 526 min (more
than 8 h), yet the average duration of on-track pausing is only
3.35 min. Overall the filaments spend 16.7% of their time
on-track, which is about half the amount of time estimated
for SCG neurons. Thus the picture that emerges for DRG
neurons is that the neurofilaments spend more time pausing
off-track but move more efficiently when they are on-track.
The explanation for this difference is an interesting question,
but answering it will require more understanding about the
factors that regulate neurofilament transport in axons.

In addition to establishing a linear relationship between
the initial slope in the pulse-escape decay kinetics and the
average velocity, our analyses also reveal that the pulse-escape

decay kinetics are very sensitive to the length of the activated
region (figure 6). The explanation for this strong dependence is
that the longer the activation window the higher the probability
that on-track neurofilaments will transition to the off-track
state before they exit the window. Together, these findings
have important technical implications for the optimal design
of pulse-escape experiments. First, it is important to ensure
that the decay kinetics are sampled adequately at early times.
Second, it is important to have an accurate measurement of
the activation window. Combining these practical insights
with the computational methods described in this paper,
the fluorescence photoactivation pulse-escape technique
represents a powerful complement to single-neurofilament
tracking and radioisotopic pulse-labeling experiments for the
analysis of neurofilament transport in axons.
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Appendix A

In general, if the Laplace transform of a function f (t) with a
Taylor expansion at t = 0 of

f (t) =
∞∑

n=0

f (n)(0)

n!
tn, (A.1)

where f (n)(0) denotes the nth derivative of f (t) at t = 0, is
given by g(s) (assuming it exists), i.e.

g(s) =
∫ ∞

0
f (t) e−st dt, (A.2)

we can see by inserting equation (A.1) into (A.2) and
subsequent term-by-term integration that

g(s) =
∞∑

n=0

f (n)(0)(−1)n 1

sn+1
. (A.3)

Hence, the derivatives f (n)(0) can be obtained as the
coefficients of the expansion of g(s) in terms of 1/s.

In our specific problem we first expand the function f (s)
given in equation (24) into a Taylor expansion in powers of
1/s, i.e.

f (s) ≈ 1 + γ10

s
− γ10γ01

s2
+ γ10γ01(γ01 + γoff)

s3
(A.4)

and then insert equation (A.4) into (23) to find the following
expression after subsequent Taylor expansion

Q̃(s) = aρ

s
− ηρ(va − vrq3)

s2
+ exp(−εa)

vaηρ

s2

× exp(−sεa/γ10) − exp(εr)
vrq3ηρ

s2
exp(sεr/γ10)

+ exp(−εa)
vaηρεaγ01

s3
exp(−sεa/γ10)

+ exp(εr)
vrq3ηρεrγ01

s3
exp(sεr/γ10) + O(s−4) (A.5)

with εa and εr defined in equation (26).

12
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Using the following rules for the Laplace transformation

1/s ↔ 1
1/s2 ↔ t
1/s2 exp(−αs) ↔ (t − α)�(t − α)

1/s3 ↔ (1/2)t2

1/s3 exp(−αs) ↔ (1/2)(t − α)2�(t − α)

, (A.6)

we find (25) for the neurofilament content in the activation
window at short times.

Appendix B

The mean rate of movement is found from equations (46)–(51)
by deriving the equation of motions for the moment (53), i.e.

d

dt
〈x〉 =

∫ ∞

−∞

(
− va

∂

∂x
ρa(x, t) − vr

∂

∂x
ρr(x, t)

+D0
∂2

∂x2
ρap(x, t) + D0

∂2

∂x2
ρrp(x, t)

)
dx. (B.1)

Integrating the third and the fourth term on the right-hand side
of (B.1) in parts and using the natural boundary conditions we
find

d

dt
〈x〉 = va pa + vr pr (B.2)

with

p... ≡
∫ ∞

−∞
ρ...(x, t) dx. (B.3)

It is straightforward to set up the equations of motion for pa

and pr, i.e.

ṗa = − γ10 pa + γ01 pa0

ṗr = − γ10 pr + γ01 pr0

ṗa0 = − (γ01 + γoff + γar)pa0 + γ10 pa + γon pap + γra pr0

ṗr0 = − (γ01 + γoff + γra)pr0 + γ10 pr + γon prp + γar pa0

ṗap = − (γon + γar)pap + γoff pa0 + γra prp

ṗrp = − (γon + γra)prp + γoff pr0 + γar pap. (B.4)

The diffusion terms in equation (B.1) do not contribute
in equation (B.4) because of the natural boundary conditions.
The stationary solutions of (B.4) are identical to the solutions
given in (7). Since the closed set of equations in (B.2) and (B.4)
do not contain the diffusion coefficient D0 their solutions are
the same as in the absence of diffusion (see [14]) and are given
by

〈x〉 = v̄t = 1

(1 + q1(1 + q2))(γar + γra)
(γrava + γarvr)

(B.5)

(see equation (27)).
For the spreading rate we follow the same strategy, i.e.

setting up equations for motion

d

dt
(〈x2〉 − 〈x〉2) =

∫ ∞

−∞
x2

(
−va

∂

∂x
ρa(x, t) − vr

∂

∂x
ρr(x, t)

+D0
∂2

∂x2
ρap(x, t) + D0

∂2

∂x2
ρrp(x, t)

)
− 2〈x〉 d

dt
〈x〉.

(B.6)

The first term on the right-hand side of (B.6) is integrated
by parts and in the second term we use (B.5) yielding
d

dt
(〈x2〉 − 〈x〉2) = 2vaMa(t) + 2vrMr(t)

−2v̄2t + 2D0(pap(t) + prp(t)), (B.7)

with

M...(t) =
∫ ∞

−∞
xρ...(x, t) dx.

Setting up equations of motion for M... one finds after
integration in parts (as in the case without diffusion [14])

Ṁa = va pa − γ10Ma + γ01Ma0

Ṁr = vr pr − γ10Mr + γ01Mr0

Ṁa0 = −(γ01 + γar + γoff)Ma0 + γ10Ma + γraMr0 + γonMap

Ṁr0 = −(γ01 + γra + γoff)Mr0 + γ10Mr + γarMa0 + γonMrp

Ṁap = −(γar + γon)Map + γoffMa0 + γraMrp

Ṁap = −(γra + γon)Map + γoffMr0 + γarMrp. (B.8)

The solution of (B.8) is described in detail in the appendix
of [14]. In the long-time limit we can replace pap(t) and prp(t)
by their stationary (normalized) solutions (see (27)), i.e.

pap + prp = q1q2 + q1q2q3

(1 + q1(1 + q2))(1 + q3)
= q1q2

(1 + q1(1 + q2))

yielding for the spreading rate (B.7)
d

dt
(〈x2〉 − 〈x〉2) = Dkin + 2D0

q1q2

1 + q1(1 + q2)
(B.9)

with

Dkin = 2v̄2q1

1 + q1(1 + q2)

(
q2

γon
+ (1 + q2)

2

γ01

)
+ 2γarγra

γ 2
rev

1

γ10

× 1

1 + q1(1 + q2)

(
1 + γ01

γrev

γon+γrev

γon + γoff + γrev

)
(va−vr)

2,

(B.10)

Appendix C

The fraction of cytosolic proteins that are initially off-track,
i.e.

(
ρap + ρrp

)
/ρ = q1q2/(1+q1(1+q2)) (see equation (7)),

and that can escape the activation window (0, a) by diffusion,
is described by

∂ρoff(x, t)

∂t
= D0

∂2ρoff(x, t)

∂x2
(C.1)

where D0 is the diffusion coefficient and,

ρoff(x, t) = ρap(x, t) + ρrp(x, t)

with the initial conditions

ρoff(x, 0) =
⎧⎨
⎩

A0 ≡ q1q2

1 + q1(1 + q2)
ρ for 0 < x < a

0 for otherwise
(C.2)

The solution of equation (C.1) can be found using the
Green’s function formalism, i.e.

ρoff(x, t) = A0√
4πD0t

∫ a

0
dx0 exp

(
− (x − x0)

2

4D0t

)
dx0

= A0

2

(
erf

(
x√

4D0t

)
− erf

(
x − a√

4D0t

))
(C.3)

13
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where erf(x) denotes the error-function, i.e.

erf(x) ≡ 2√
π

∫ x

0
exp(−s2) ds. (C.4)

The temporal derivative of ρoff(x, t) can be obtained as

∂ρoff(x, t)

∂t
= A0

2

√
D

π
t−1/2 ∂

∂x

(
exp

(
− x2

4D0t

)

− exp

(
− (x − a)2

4D0t

) )
(C.5)

which is then integrated over the window size to obtain the
temporal derivative of the content due to diffusion, i.e.

dQoff

dt
=

∫ a

0

∂ρoff(x, t)

∂t
dx

= −A0

√
D0

π
t−1/2

(
1 − exp

(
− a2

4Dt

))
. (C.6)

For small times t, we neglect the exponential term and find

Qoff(t) = Qoff(0) − 2A0

√
D0t

π
. (C.7)

Combining the linear decay of fluorescence due to the
movement of on-track proteins (see equation (25)) with the
decay of fluorescence due to escape of diffusing off-track
proteins we find

Q(t) = aρ − ηρ(va − q3vr)t − 2ρ
q1q2

1 + q1(1 + q2)

√
D0t

π
,

(C.8)

with ρ given in equation (9). Normalizing the initial
fluorescence to unity, we obtain

Q(t)

Q(0)
= 1 − 1

a

(va − q3vr)

(1 + q1(1 + q2))(1 + q3)
t

−1

a

2q1q2

1 + q1(1 + q2)

√
D0t

π
, (C.9)

i.e. equation (56).
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